Самые популярные статьи







    Виды связи влаги с материалом

    Влажные пищевые продукты, подвергаемые сушке, состоят из твердого сухого каркаса, воды, небольшого количества воздуха и паров. Процесс удаления влаги сопровождается изменением физико-химических показателей продукта, его теплофизических характеристик и структурно-механических свойств.

    Вода – основной компонент растительных клеток, на ее долю приходится от 75 до 90 %. Различают свободную и связанную влагу.

    Свободная влага – не связана с молекулами вещества, может свободно перемещаться из клетки в клетку. Она используется для питания и поддержания жизнедеятельности клетки. Это основное количество влаги.

    Связанная влага – образуется в результате взаимодействия с молекулами вещества и характеризуется следующими физико-химическими свойствами:

    •    слабо, либо совсем не растворяет вещества, которые растворимы в свободной воде;
    •    имеет удельную теплоемкость ниже обычной и примерно равной теплоемкости льда;
    •    замерзает при низких отрицательных температурах;
    •    обладает повышенной плотностью по сравнению со свободной влагой;
    •    не электропроводна, в отличие от чистой воды, так как не содержит растворимых веществ.

    По своим свойствам связанная влага приближается к упругому твердому телу.

    В пищевых продуктах одновременно содержатся, как связанная, так и свободная влага. Количественное соотношение между ними зависит от природы продукта. Но даже в одном продукте это соотношение может изменяться при измельчении, внесении добавок, тепловой обработке и т.д.

    Удаление влаги из материала при сушке зависит от общего содержания влаги и вида связи влаги с материалом. Связь влаги с материалом характеризуется величиной свободной энергии изотермического обезвоживания – работой, необходимой для удаления 1 моля воды при постоянной температуре без изменения состава вещества при данном влагосодержании. Энергия, затраченная на удаление 1 кг/моль воды из влажного материала, определяется по уравнению (1):

    alt (1)

    где: alt – энергия связи влаги, Дж/моль;
            alt – универсальная газовая постоянная, Дж/(моль×К);
            alt – температура, °С;
            alt – относительная влажность воздуха.

    При наличии в материале свободной влаги alt. По мере удаления влаги прочность ее связи с материалом увеличивается и энергия связи alt возрастает. Чем меньше влагосодержание материала, тем больше величина энергии связи.

    Ребиндер П.А. классифицировал виды связи влаги с материалом на 3 группы: химическую, физико-химическую и механическую.

    1 Химическая связь
    Химически связанная влага подразделяется на воду, связанную в виде гидроксильных ионов и воду, заключенную в кристаллогидраты. Первая образуется в результате химического взаимодействия воды с материалом в определенном соотношении, при котором вода, как таковая, исчезает. Удалить эту влагу можно только в результате химического взаимодействия, реже при прокаливании.

    Кристаллогидратная влага входит в структуру кристалла и удаление ее возможно только при прокаливании. Эта влага характеризуется количеством молекул воды, которые входят в состав кристалла.

    Химическая связь самая прочная, химически связанная влага при сушке практически не удаляется и на процесс сушки не влияет. Энергия связи химической влаги самая высокая (1-100×105 Дж/моль).

    2 Физико-химическая связь
    Эта связь менее прочная. К этой группе относится адсорбционно и осмотически-связанная влага.

    Адсорбционно-связанная влага. Эта влага удерживается у поверхности раздела коллоидных частиц с окружающей средой, благодаря молекулярно-силовому взаимодействию поверхности мицелл и гидрофильных центров белков, углеводов и липидов.

    Большинство растительных продуктов – гидрофильные коллоиды с высокой молекулярной массой, высокой степенью дисперсности (размер частиц 10-7 - 10-9 м), большой поверхностью раздела, а это приводит к появлению значительной поверхностной энергии. Под действием избыточной энергии на внутренней и внешней поверхности материала происходит поглощение молекул воздуха и водяного пара из окружающего пространства. Это явление называется адсорбция. Кроме этого, на поверхности может происходить обычное растворение влаги с проникновением внутрь вещества. Это явление называется абсорбция. Или же может происходить химическое взаимодействие между влагой и поверхностными веществами. Это явление называется хемосорбция. Все эти процессы в совокупности называются сорбцией. Но так как преобладает в растительных продуктах адсорбция, то связанную таким образом влагу называют адсорбционной.

    Адсорбционно-связанная влага, особенно первый слой молекул – мономолекулярный слой, является наиболее прочно связанной с веществом. Последующие слои связываются с веществом менее прочно, энергия связи уменьшается, и свойства такой влаги приближаются к свойствам обычной воды. При образовании мономолекулярного слоя происходит выделение теплоты адсорбции, это связано с уменьшением поверхностной энергии. Происходит сжатие объема (явление контракции – объем набухшего тела меньше суммы объемов материала и поглощенной влаги).

    Удаление этой влаги при сушке связано с дополнительным расходом энергии на теплоту адсорбции и обязательным превращением воды в пар.

    Осмотические связанная влага. Эта влага отличается от адсорбционной тем, что соединение с материалом не сопровождается выделением теплоты и связь менее прочная.

    Высокая растворяющая способность воды объясняется дипольным характером ее молекул и их способности к образованию водородных связей. Свойства водных растворов зависят от сил взаимодействия между молекулами воды и растворенных веществ. Осмос – процесс диффузии растворителя через полупроницаемую мембрану под действием кинетической энергии молекул. А оболочки соединений, входящий в состав продукта, являются полупроницаемыми. Диффузия растворителя (воды) происходит из области с более высоким парциальным давлением (меньшей концентрации раствора) в сторону меньшего парциального давления (большей концентрации раствора). В результате этого процесса возникает осмотическое давление – сила, которая обусловливает диффузию молекул.

    Для растворов величина осмотического давления alt  равна:

    alt (2)

    где: alt – молярная концентрация раствора;
            alt – универсальная газовая постоянная, Дж/(моль*К);
            alt – температура, °С.

    В результате этого вода в клетке находится в состоянии тургора (связана осмотическими силами). Так как клеточные оболочки эластичные, то они выдерживают такое напряжение. Такое состояние создает опору тканям. Поэтому качество многих  плодов и овощей зависит от состояния их тургора. При избытке влаги тургор усиливается, это может привести к растрескиванию плодов и овощей. При недостатке влаги наступает плазмолиз – цитоплазматическая мембрана сморщивается и отделяется от клеточной оболочки.

    Осмотически связанная влага находится внутри клеток как бы в полупроницаемом мешочке, не отличается от обычной воды, при сушке перемещается внутри материала без фазового превращения в виде жидкости. Процесс удаления этой влаги из клеток аналогичен и противоположен осмотическому ее проникновению внутрь клеток.

    Энергия связи осмотически-связанной влаги определяется уравнением (3):

    alt (3)

    где:  alt – молярная доля воды в растворе ( alt);
             alt – молярная доля растворенного вещества.

    3 Механическая связь
    Механически связанная влага самая слабая, удерживается за счет заполнения макро- и микрокапилляров. Растительные ткани имеют в зависимости от размера пор микро- или макрокапиллярное строение. Поэтому эту влагу также называют капиллярно-связанной.

    Капиллярно-связанная влага обусловлена поверхностным натяжением и капиллярным давлением. Под действием давления происходит поднятие влаги в капиллярах. Высота поднятия воды зависит от радиуса капилляра: при радиусе 10-1 см, высота подъема равна 1,5 см; при 10-6 см – высота подъема 1,5 км. В зависимости от размера капилляры делятся на микрокапилляры (радиус меньше 10-7 м) и макрокапилляры (радиус больше 10-7 м).

    Капилляры с меньшим радиусом имеют меньшее поверхностное давление, чем более широкие, поэтому вода в них поднимается на большую высоту. В процессе сушки вода из макрокапилляров перемещается в более мелкие и оттуда испаряется. При этом уровень влаги в крупных капиллярах уменьшается, а в мелких – остается постоянным.

    Вода, находящаяся в микрокапиллярах, отличается от свободной меньшей вязкостью и поверхностным натяжением и большей теплоемкостью. Температура замерзания такой влаги меньше 0°С. Энергия связи в микрокапиллярах определяется по уравнению (4):

    alt (4)

    где:  alt – поверхностное натяжение на границе воды с паровоздушной смесью, Н/м;
             alt – удельный объем кг/м3;
             alt – радиус капилляра, м.

    Это уравнение указывает на увеличение энергии связи с уменьшением радиуса капилляров.

    Механически связанная влага практически не отличается от свойств свободной воды, ее можно рассматривать как свободную влагу, которая при сушке легко удаляется в первую очередь.

    Свободная влага находится на поверхности продуктов, в крупных порах и макрокапиллярах, она легко удаляется механическим путем (отжатием, прессованием). 

     

     

     

    Материал подготовлен по: "Технология сушки: Учебно-методический комплекс", Киселева Т.Ф. - /Кемеровский технологический институт пищевой промышленности. - Кемерово, 2007. - 117 с.



    Нашли ошибку? Выделите её и нажмите Ctrl+Enter. Будем благодарны за помощь.